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ABSTRACT

Several possible explanations of the mechanism of

the break-up of shaped charge jets are suggested. In particular,

an approach using the assumption of visco-plastic flow is pre-

sented in detail. According to this approach, a constant area

jet with linear velocity gradient breaks first at the tip, and

then the break-up progresses back towards the rear. The average

length of the fragments could be adjusted to two per cent of

the original jet length if a coefficient of viscosity of 100

lb.-sec./ft. 2 were used.



I. INTRODUCTION

This is a progress report on a research project

which utilized shaped charge jets as a means to study the proper-

ties and behaviors of metals under a very high rate of strain.

In connection with the analysis of hypervelocity impacts, Chou1' 2

and Riney 3 have assumed that materials possess a visco-plastic

property. At present, the numerical values of the coefficient

of viscosity, or the stress-strain rate relations of materials

under high rate of strain are not known. There are definite

disagreements among different investigators as to the existence

and/or significance of viscosity. Experimental evidence

apparently is needed.

It is difficult to evaluate the importance of

viscosity from most impact experiments because compressibility

effects in the form of stress or shock waves is always present.

A one-dimensional high-strain-rate tension experiment would be

most ideal for this purpose. The jet ejected from a shaped charge

approaches this ideal model very closely and, therefore, was chosen

for this study. If the jet is assumed to behave as a visco-plastic

material and, if a separation criterion similar to the one given

in references I and 2 is used, it is shown that the break-up of the

jet may be predicted and the coefficient of viscosity numerically

evaluated.
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However, it must be pointed out that according to

experiments performed by DiPersio, Simon and Martin4 , the behavior

of the jets obeys the simple Hopkinson's scaling law. If this scaling

law is valid, then the viscous, or strain rate, effect must be unim-

portant. Therefore, it appears that the visco-plastic model probably

cannot singly describe the motion of the jet and its break-up

mechanism.

Although our original objective, i.e., the numerical

determination of the coefficient of viscosity through the use of

metal jets, appears unsuccessful, the study of the shaped charge jet

was continued in order to obtain a more definite conclusion concerning

the applicability of the visco-plastic theory. Understanding of the

break-up process is also important if theoretical improvement of the

penetration power of the jt.;t is to be achieved.

A statistical approach which is based upon the assump-

tion that the tensile strength for a given material is not exactly

constant but shows a scatter characteristic may also be used to

describe the jet behavior. This approach was first proposed by

Mott in studying the fragmentation of shell cases.

In another approach it is assumed that the jet is at

a high temperature immediately after formation and that it is also

in a molten state which can be subjected to a very large elongation.

As the jet moves forward, it cools and gradually changes into a
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solid state which cannot sustain a large magnitude of elongation

and thus breaks up.

The last two approaches are currently being

investigated.

II. DESCRIPTION OF THE
BREAK-UP OF SHAPED CHARGE JETS

The basic theories of the formation of a shaped

charge jet and its penetration into targets were first presented

by Birkhoff, MacDougall, Pugh and Taylor in 19485. Since that

time, these theories have been refined by Eichelberger 6 and have

been verified experimentally by Eichelberger and Pugh 7 , 8 . These

theories, however, do not attempt an explanation of the break-up

mechanism of the jet.

For most jets, the metal mass is uniformly distribu-

ted along the axial direction, although, depending on the charge and

liner design, it could be variably distributed. The velocity is

maximum at the tip and varies linearly to a minimum at the rear.

The velocity gradient is constant at a given time, except possibly

in the region near the tip. There is usually a slug with a large

mass following the main jet and traveling at a low velocity.

For the present purpose, the slug will not be considered.
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Because of the difference in velocity between the

tip and the rear, a condition of constant strain-rate exists, and the

jet elongates. For a typical jet the velocity at the tip is approxi-

nmately 8 km./sec. and at the rear 2 km./sec. This continuous jet

eventually breaks up after approximately 120/44 sec. The total

elongation may be of the order of 300 to 4007. of the original length

at the time of its formation. This value of elongation is much

higher than the static ultimate elongation of the usual jet metals,

i.e., copper or steel. After the break-up, the jet changes to

short cylindrical segments with an average length of approximately

two one-hundredths of the length of the final continuous jet; in

other words, the jet breaks into approximately 50 segments. Following

the break up, the length of each segment remains unchanged although

the spacings between segments continues to increase due to the

difference in velocities.

According to a scaled shaped charge experiment

performed at BRL 4 , the Hopkinson's scaling law may be applied to

shaped charge jets with respect to the following parameters:

velocity gradient, jet diameter, number of particles produced,

average particle length, penetration depth and standoff distance.

According to this scaling law, if two shaped charges are identical

in all but size, with a linear scale factor j -

then the velocity and geometry of the second jet are identical

to those of the first one for points located at distances A times
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that of the first one and occuring at a time A times that of the

first one.

The Hopkinson's scaling law was first proposed for the

study of the pressure and velocity disturbances due to explosions.

Judging from the results of numerous hypervelocity cratering

experiments, it is believed that this scaling law is applicable to

impact problems. Concerning its applicationi to shaped charge jets,

reference 4 appears to be the only source of experimental evidence

devoted to the investigation of this problem. It appears that addi-

tional tests are needed before a firm statement about the scaling

law in shaped charge jets can be made.

III. POSSIBLE MODELS FOR THE BREAK-UP PROCESS

In connection with practical applications, there

have been several hypotheses concerning'the break-up process.

One of these assumes that the jet breaks up simultaneously at

a certain time after its formation. Another hypothesis states

that the jet breaks one segment at a time and that it occurs when

the jet element is at a certain distance from the base of the charge.

At the present time, there are not sufficient experimental evidences

to verify which of these hypotheses is valid. Furthermore, these

hypotheses do not offer any explanation of the break-up mechanism.
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In the following discussion, three possible models

for the break-up process are suggested and described briefly. They

are the visco-plastic model, the failure scatter model, and the

molten phase model.

A. Visco-Plastic Model

In this approach, the material of the jet is assumed

to follow a simple visco-plastic stress-strain rate relation:

According to this relation, the stress acting between two adjacent

elements in the jet is equal to the yield stress Ty (a constant for

perfectly plastic material), plus a viscous stress depending on the

strain rate . Combining this equation with the equation of motion,

the governing equation (equation 8) may be derived. This equation,

together with the proper boundary and initial conditions, may be solved

to give the time history of the motion of the jet.

To predict the break-up, a separation criterion similar

to that proposed in reference 1 is used. It postulates that the jet

can sustain very large strain and elongation without breaking as long

as the viscous stress is larger than a critical value. It will be

shown in the next section that by assigning proper values to the
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coefficient of viscosity, the jet may be made to break-up from the tip,

one segment after another, with an average length of two per cent of

the total jet length.

Although this approach could explain the process,

it is doubtful that it definitely represents the true phenomenon.

The objection to the visco-plastic assumption is that the Hopkinson's

scaling law excludes any strain rate effect., In other words, if a

jet follows the Hopkinson's scaling law, the viscous effect must

be unimportant.

B. The "Failure-Scatter" Model

This approach was first suggested by N. F. Mott 9 'in

1947 for the study of fragmentation of shell cases. It is based

on the assumption that there exists a scatter in the value of the reduc-

tion in area (or value of strain) at which fracture occurs in a tensile

test.

This theory may easily be applied to the shaped charge

jet. If there were no scatter (the strain at fracture was perfectly

definite), the stretching jet would break at all points simultaneously.

If scatter in strain exists, there is, in any length of the jet, a

finite probability of fracture which increases rapidly as the strains

approach the critical value. Then fracture will first occur at one

point. After fracture, the free surface can not sustain stress, and
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a release stress wave will propagate inward. The unstressed (and

unstrained) regions spread with a velocity which can be calculated by

either the elastic, plastic-rigid, or visco-plastic assumptions. This

is shown in figure A in which a fracture is assumed to have occurred

at A and the stress has been released in the shaded regions AB and

AIB':

B A A' E3'

FigureA.

Fracture can no longer occur in the shaded regions because the

material in this region is rigid, and no stretching occurs. In the

unshaded regions, plastic flow and stretching will continue. Strain

increases and fracture becomes more likely. The average size of the

fractured segments will be determined by the rate at which the shaded

regions in figure A propagate, thereby preventing further fractures.

Segment size also depends upon the scatter property which may be

expressed as the probability, P, that the tensile test specimen breaks

before a strain,4, is reached.

p P
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This probability, which must be determined from experiments, is not

known at present.

This theory gives no explanation of the fact that the

jet can elongate to a length three or four times longer than its

original length.

C. The Molten State Model

Statically, a metal can not sustain an elongation of

more than 100%. Two factors may contribute to the 300 to 400% elong-

ation of the jet; namely, strain rate and temperature. If the strain

rate effect is rejected as a possibility, the high temperature explan-

ation seems most reasonable.

Immediately after formation, the temperature of the

slug is estimated to be above 1000oC in the center and somewhat

cooler near the surfaceI0. The temperature in the jet is also

believed to be very high. An estimation by Pugh* indicates that the

slug temperature is just below the melting point of the metal. At

these high temperatures, the metal can easily elongate to four or five

times its original length without breaking. As the jet moves forward,

it cools due to radiation and air convection. As the temperature

decreases, the metal changes into the solid state and can no longer

sustain large elongation.

*Private Communication
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The true mechansim of the break-up process is

probably more involved than that indicated by any one of these

simplified models. At the present time, the heat transfer prop-

erty of the jet is under investigation and, it is hoped, the

validity of the molten state model can be determined approximately.

The results of the visco-plastic flow analysis are presented in the

next section for future reference.

IV. EQUATIONS, CRITERIA, AND
SOLUTIONS OF THE VISCO-PIASTIC MODEL

A. The Governing Equations

The equations in this section are derived for a jet

with variable cross-section area. The analysis for the constant

area jet will be treated as a particular case of the former. Further,

LaGrange coordinates are to be assumed for the determination of these

equations.

The continuity equation for the jet is:

j% A. d = jAd (1)

or,

A dx (2)

1i
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The stress-strain relation is assumed to be visco-

plastic, which for simple tension has the following form:

ITY + E(3)

Referring to figure B, the equation of motion may be shown to be:

fpA d~ s)Y v- dA dz -A -~~dZ=O0 (4)
A- awa a)

Figure B

Introducing equations 1 and 2 in equation 4 yields:

P A d-T A - (5)

Substituting equation 3 into equation 5 yields:*

L_ A* A----.0 (6)C) p ,X2  A. dx P. ax A. cix jo

Introducing the following dimensionless quantities:

x = x . -u' •t' a q..• ,f ( 7)

* In the second term of the left hand side, a factor A has been neglected.
AO
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Equation 6 becomes:

R•• •_dAo* [3•x_ d Ao(8R OC~ (8)
ct' *.x A dx' x A~dx'

This is the governing differential equation for the velocity v' in which

t' and x' represent the independent variables. If the boundary condition

and initial conditions are simple, this equation may be solved by

LaPlace transform techniques, separation of variables or other standard

methods. For complicated initial and boundary conditions, a finite

difference method must be used.

B. The Constant Area Jet

In the problem of a constant area shaped charge jet

the governing differential equation of motion will be a particular
dAp

case of equation 8 obtained by substituting i- 0O, thus:

- c) 0 (9)
at' • '

Since this analysis is directed to the determination :of

the difference in velocities, the jet is assumed to have zero velocity

at the tail end, maximum initial velocity Vo at the tip and linear

velocity variation at all intermediate points. At the tip and the tail,

stress-free end conditions are assumed. From equation 3, the end

conditions are at f X 0 For the present
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problem which involves very high strain-rate, £2. is small

compared with the average strain rate, and it will therefore be

neglected. The initial and boundary conditions are:

"v-= Xat • o ;. o < '< I (10)

61 =, 0 Xo •' o .=o x'-
a X,

Solution of the constant area jet as defined by

equations 9 and 10 is obtained by the use of LaPlace transformations,

as shown in Appendix A.

The velocity, v', strain E and strain-rate

are given by equations A-9, A-10, and A-11 respectively in terms of

t' and x'.
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C. Constant Area Jet (Finite Difference Method)

In order to establish the accuracy of the finite

difference method, it was first applied to the constant area jet

as defined by equations 9 and 10. Details of the solution are shown

in Appendix B. Table I and figure I show the comparison between the

fini'l results obtained from the finite difference method and the

LaPlace transformation. The general agreement between these two methods

seems satisfactory.

D. Separation Criterion

To determine when break-up or separation occurs

a criterion is hypothesized as follows: for jets under a high rate

of strain, separation occurs when the following two conditions

are simultaneously satisfied:

1. The strain-rate is lower then a critical value; and,

2. The strain is higher than a critical value.

Thus, separation occurs when:

4 2)C 4C E>C (11)

where C1 and C2 are constants, QC the static ultimate stress.

The constant C2 is assumed to be the static ultimate strain of the

material.
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E. Numerical Calculations Using Separation Criterion

The values of the various constants must be known

before numerical calculations can be performed. Unfortunately,

the values of the majority of these constants are not known. To

demonstrate the applicability of the theory, all unknown values were

estimated.

The constitutive equation 3 contains two constants,

the yield stress in pure tension VY and the coefficient of

viscosity in pure tension A . It can be shown that if the gen-

eral visco-plastic relation as proposed by Hohenemser and PragerII

is used, these constants for simple tension may be related to those

in pure shear, or

where k is the yield stress in shear and Ashear the coefficient

of viscosity in shear.

In reference 1, a value of 100 lb.-sec./ft. 2 is

used for Ashear. Hence a/,u of 300 lb.-sec./ft. 2 was adopted for

the numerical calculation. From experimental data, the relative

velocity between the tip and tail is approximately 6 km./sec.,
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therefore, the Vo was chosen to be 20,000 ft./sec. and the rear

end was assumed to be stationary. Further, representable basic values

for the various physical properties were assumed to be those of

copper. The quantities assigned to (T,C, c7. *were 30,000 psi,

0.20, and 30,000 psi respectively.

Since all values have been stipulated, the separation

criterion states that for a strain-rate lower than .7 and

greater than .2, separation occurs. The strain and strain-rate curves

for various values of t' are plotted and are shown in figures 2 and

3 respectively. Also shown, as horizontal lines, on these figures is

the respective separation criterion for each phase. The intersdction

of the E qline and the strain curves yields three points, and these

CRR
points are plotted in figure 4 as t' versus x' for =2

Similarly, the strain-rate curves have five points of intersection with

the Aa- ) line, and these are plotted in figure 4 as t' versus

x' for SIIL O.7 The intersection of the critical strain and

critical strain-rate curves then determines the t' and x' of separation

for the particular physical properties previously outlined. These

values are / .3 or tc 0q = I Suc. and 'K O2CR:.~r•M:l."• n K.

or X 02. -.P4.

The fact that Xcr u 0.02 ft. agrees with the

experimental results that the jet breaks into fifty segments. Due

*This value should be approximately 15,000 psi, however, this does
not effect the final calculations.
The original jet length L is assumed to be one foot.
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to its symmetry, the behavior of the jet at the rear end is identical

to that at the tip; therefore, a segment of length 0.02 ft. will

simultaneously break off from the rear.

F. Constant Area Jet after Break-up (Finite Difference Method)

From the previous section, it was found that the

jet breaks at a distance x' a .02 from the tip according to the

separation criterion. After the break-up of the tip, the remainder

of the jet would behave in a manner similar to the first part, and

the second break-up would take place at x' = .04. The differential

equation, initial and boundary conditions and solution for the

second break-up are given in Appendix C and Table 3.

In a similar manner, other break-ups would take place

at x' = .06, .08, .10,...... .. , etc.

The break-up of the first part can be explained by

the above hypothesized "separation criterion". But the break-up of

the second part cannot be explained using the same-criterion, since

the true strain in this case always remains above the critical value

(see figure 5). However, if the strain is referred to the length after

each break-up and not to the original length, then the same criterion

will yield the desired results. Hence, this criterion can explain the

progress of all the break-ups provided relative lengths are used in

the analysis.
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G. Variable Area Jet Finite Difference Method)

It is shown in the preceding section, that for a

constant area jet-, the break-up initially occurs at the tip and rear

ends. If the area of the jet is not constant, i.e., it has a slight

fluctuation along the axial direction, then the jet could break at

a position which is close to the minimum area section.

For simplicity, the area distribution between x' z 0

and x' .024 is assumed to be

eA = 0  A'
W M =' (12)
dX

and for x'>o0Z4, A• constant: The area

distribution, the initial condition and the motion of the jet are

assumed to be symmetrical with respect to x' a 0. The end condition

is then v' : 0 at x' z 0. The governing equation, equation 6, be-

comes, for t' 0 and x' 0

a 'i +X + 3A = P(3

')X'A (13)

Sax

The corresponding initial and boundary conditions are:

v' :.*x' at t' Z 0 and x' > 0

v' : 0 at x' : 0 and t')/ 0 (14)

This. problem is solved by the finite difference method, and its

solution is shown in Appendix D. The results are also presented in

figures. 6 and 7 in the form of 2 vs x1 andv
aX' vs x' curves



respectively. It can be seen from figure 6 that in a small neighbor-

hood adjacent to x' : 0, the strain-rate -, decreases with respect

to time, Since the strain - increases monotonously, according to
theseparation criterion, when .decreases to a critical value,

t p o t wc

break-up could occur at a position adjacent to the minimum area

section.

V. CONCLUDING REMARKS

The detailed solution of the visco-plastic model

is presented in this report, although, it may not describe exactly

the mechanism of the jet break-up. The other two models are dis-

cussed only briefly, and they are currently under investigation. It

is quite possible that a combination of these simple models could

eventually give the exact description of the jet break-up.
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H : .00589

x OH IH 2H 3H 4H 5H

vI .0163 .0170 .0188 .0220 .0261 .0308
by LaPlace
Transformation
Method

v. .0166 .0172 .0191 .0222 .0261 .0308
by Finite-
Difference
Method

I.MBLE 1 - COMPARISON OF SOLUTIONS

OF EQUATION 9 BY LaPLACE TRANSFO!4ATION

BY FINITE-DIFFERENCE METIIOD AT t' - .24
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VIII. NOTATIONS

0.,: original area at x' 0

As: original area =

5 : Bingham Number a v.

C : Constant

Interval length in x' direction

.- :Original length of jet

L : Interval length (time direction)

R: Reynold's Number

STime

z Dimensionless time a

-: Dimensionless displacement

7r Velocity -

-U Dimensionless velocity 'tr

V-" Initial jet tip velocity

X z Original abscissa, measured from the end of string in
LaGrange coordinates

X: Axial fixed coordinate

S: Normal Strain - - =- -e

S- Arbitrary constant of area variation

A- Coefficient of viscosity in tension
Force

"- Engineering normal stress O original Area

;: Static ultimate Strength in Tension

T- Yield Strength in Tension

=: Density (Mass/Volume)

: Original Density

4ý" Dimensionless Strain-rate
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IX. APPENDIX A

A. Solutions -for the Constant Area Jet

Applying the LaPlace transforms to equation 9 yields

L~P~-Lf (A-1)L -L T 0 a•
with 0 0 pt

the transformed differential equation 9 becomes:

zT-- RPiErflx' (A-2)LX=,z

and the transformed boundary conditions are:

Lv~0  cit i>O 0 nd XO 0 '~ (.3

The complementary solution of equation A-2 is:

C + cz e(A-4)

and the particular solution is:

P
hence, the general solution of the transformed governing equation

A-2 is:

-c4e (A-5)
P 

e
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Using the boundary conditions, equation A-3, the

constants are:

_S W _ (e4?P )
P (e -e-P ) (--6)

therefore, the solution of equation A-2 after rearranging is:

•=p( '+• ¢ - e "(X-e, +e f
X + C -) (A-7)

Applying the binomial expansion to the denominator

in equation A-7 and realizing that:

I -Je-'R •

equation A-7 becomes, upon simplification:

I X+ I[ e-i§P(Zh?4 + ZJ) 2)-o)

Findng te I'%0  (A-8)

Finding the inverse transform of each term in equation A-8 the
solution for the velocity, strain and strain-rate are:

- C'fC Zr ++XI + (A-9)

hj 00 rc zr
Fit V9 -0 )
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E~~~ f= ,'i+( k AL

"•'° (A-10)
~~~er I~e f ( -!x)Aýr ( fr ) (AL-ln,)

- +erfc ()n+

-4,o ,ZiV zf-6-)
B. Constant Area Jet (Finite Difference Method)

The differential equation of motion is:

a'- =0 (9)

and the initial and boundary conditions are
V X # t0 C

C_.. =0 at t'>O : X I=0 X'=I (10)

ax'

Cover the region of interest in the (x', t') plane

with the mesh defined by

X H ,t --KL (B-1)A 0, - .. •.•

Function values at mesh points will be characterized

by appropriate subscripts; thus v' will denote the value of the
i,k

approximate solution v' (x', t') at the mesh point x n xi and t : tk.

Replacing a by the central difference quotient and a

by the forward difference quotient in equation 9 yields

S-Z r.( ,-i- , R -2)____
h/z L.. '(B2
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The mesh width L in the time direction can be chosen so that the

following stability criterion 12 is satisfied,

LH 2 P (B-.3)

By taking L " .02, H becomes : .00589. Substituting B-3 in B-2

gives

V% is formed by taking the arithmetic mean of V1  andi,k-el i+l,k

Vei-lk*

~-I
The boundary condition -- 0 0

can be handled in many different ways. 13  The following method was

found to give best results.

Replace - by tie central difference

quotient. In setting up the central diftrence quotient, functional

values at exterior mesh points are ed-x. "Z = is

replaced by ( V-I, K - Which gives

Table 2 shows the vluwuea cc1-•clted by this method.

While calculating this Table, the inr-v.i., value of v' corresponding to

x' : 0 and t' : 0 is changed from 0 ti F'A. This change was made with

a view of obtaining an improvement i,,:. ar.ement with the boundary

condition awt ew"* O.-o XMo.
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C. Constant &rea Jet - After Break-Up Ginite Difference gethod)

The governing differential equation of motion is

and the initial condition is: vo at t' - 0 and *OZ 4 )('4

equal to vI at t' = o24 and oOz 4 X from AppendixA.

Boundary condition:

--- = 0 oat X'=.oZ and t'>O

Proceeding in the same manner as in Appendix B,

the partial differential equation is replaced by the following

finite difference equation:

Values of v' at t' : 0 and .0" O I ar ot-,ned from

equation A-9

The boundary coudition • ---0 ) 02

is handled in the same mannez as in Appendix B.

.r.Vlacernant • or any x' and t is calculated from

the relation (4 W r di by simps sta.

E = I is determined from the central difference formula,
cp

- xfor numerical differentiation.

D. Variable Area Jet -Finite Difference- Method)

The governing differential equation is equation 14,

+ +j=)X"X ox, M. I
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where R* : 1000 B ! 472; 2 :2

The initial and boundary conditions are:

I' 0 at X' =o t' />0(o

Using the same notation as for constant area jet, and transforming

the partial differential equation 14 into finite difference form, i.e.

replacing and by the centralC1 X'z ;•X '

difference quotients and _.. by the forward difference

quotient, the following is obtained

Z~~~~ VI,-t-rZt~

OZ PH 0)-1)

L.

To satisfy the stability cilLcd-itkn pt Fu ? H,==

Taking H " .004 and L - 8 x 03IO, equation D-1 becomes L

/ -6
,, .50Z :,,,,+.498 t',_, I(.5Z X 10 D-2)

* The -value R use-dprevi~ousl~y 7isl1153. Tihieipr!ýsen
of R Z1000 is used as a matter of convenience and to "%um
study the results qualitatively. However, R : 1153 will
be used in the exact analysis.
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Equation D-2 is obtained for the variable area jet.

If it is assumed that the area of cross-section of the jet increases

in a certain regiou of x' and then remains constant, two finite

difference equations for the problem are applicable, one for the

region of variable area and one for the region of constant area.

Equation D-2 is valid for the case of variable area. For the case

of constant area t) = , therefore D-1 yields.

74 +1 0+ V <(-3)+ -( C,
2

Table 4 ehows values calculated from formulas D-2

&a0d D-3. It is assumed that the area of the jet increases from,

X =0 ,o X'=.OZ4 ; and is constant for X' > .0 4

Displacement LAIfor any x' and t' are calculated

from the relation U -f dt by Simpson's rule. Strain

= - is calculated by using the central difference

formula, + -- t _ for numerical

differentiation. The values of C.) ' aud are

plotted vs. x' in figures 6 and 7.
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